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A finite element formulation using dynamic explicit time integration scheme is developed for numerical
analysis of autobody panel stamping processes. The lumping scheme is employed for the diagonal mass
matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew
boundary condition and direct trial and error method. To investigate the effects of punch velocity, vari-
ous values of punch velocity are used for numerical analysis. The mass scaling scheme is introduced for
economic analysis. To investigate the effects of mass scaling, various mass scalings are used. Computa-
tions are performed for analysis of complicated autobody panel stamping processes including the forma-
tion of an oilpan and a fuel tank.

1. Introduction

Sheet metal forming is currently one of the principal manu-
facturing processes in the automotive industry, aerospace in-
dustry, electrical device industry, kitchenware industry, and so
on. The successful applications of sheet metal forming and the
popularity of sheet metal products are attributable to their rela-
tively light weight, low cost due to mass production, good sur-
face finish, near net shaping of final products, and great
interchangeability. From the viewpoint of mechanics, the de-
formation problems of sheet metal working are nonlinear prob-
lems in geometry, material behavior, and contact phenomena.
The knowledge of the deformation mechanics and the influ-
ence of the process variables are important in the design of
sheet metal working processes. Such information allows better
design criteria for actual forming processes. The trial and error
procedures based on the experiences used for designing the
processes are expensive, and these often result in long lead
times in developing new sheet metal parts. To reduce the
tooling lead time and cost in die development, an integrated
approach of computer-aided design/computer-aided manufac-
turing/computer-aided engineering system, which modifies the
design on the basis of formability analysis, has been introduced
in many automotive companies. Process modelling by a sys-
tematic method of simulation such as the finite element method
may be used as a tool to improve the quality of the product and
to reduce the dependence on skilled tool and die makers.

The finite element method has long been used as a means of
reliable computation to analyze various sheet metal forming
processes. Starting from two-dimensional analyses of sheet

forming processes, various analyses have been performed by
the implicit method based on the direct matrix solver, as well as
by the explicit method based on dynamic solutions (Ref 1-7).

For simple two-dimensional analyses, the implicit method
of analysis seems to appear significantly more efficient, be-
cause it provides better solution accuracy than the explicit
method. The explicit method required relatively large amounts
of computer time due to the stringent limitation in time incre-
ment imposed by the stability condition. As a consequence,
much of the efforts for development in the following years has
been concentrated on the implicit methods. The successful use
of two-dimensional finite element analyses has led to a natural
extension of the implicit methods to three-dimensional prob-
lems appearing rather straightforward (Ref 8-10). However,
the transition to three-dimensional forming problems brought
about many unexpected difficulties. In particular, the variable
contact conditions caused a number of problems, including the
problem of stable convergency. This led to a renewed interest in
the application of the explicit method based on dynamics to es-
sentially quasi-static sheet forming problems. In the explicit
method, the size of time increment must be determined by the
limitation in stability, but must not be significantly affected by
the increased number of contact points.

The explicit dynamic algorithm has several significant ad-
vantages over the conventional implicit static algorithm for
sheet metal forming problems (Ref 11, 12). In the explicit
method, there is no banded equation solver like the Newton-
Raphson method. Consequently, the computational cost of a
solution does not grow quadratically with the problem size. In
general, the computational cost is linearly proportional with the
problem size in the explicit dynamic procedure. Recently, the
dynamic explicit type of the finite element method has been
used more often in industry, especially by the commercial
codes. The major disadvantage of the explicit dynamic proce-
dure is due to the fact that it is a time and rate dependent dy-
namic procedure that sometimes loses static stability of a
solution. Generally, this requires that some sort of artificial
time scale must be introduced into the analysis to achieve an
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economical solution. Dynamic sheet metal forming analysis is
performed at the fast punch velocities around the order of 5 to
20 m/s, with the assumption that this approximates the quasi-
static solutions. In the same way, for economic analysis, the
mass scaling scheme is used, with approximately 10 to 60 times
the real density, which does not affect solution reliability. A fi-
nite element program using dynamic explicit time integration
scheme is developed for numerical analysis of autobody panel
stamping processes (Ref 7, 11), and a study of the effects on the
results of dynamic explicit analysis by using the faster punch
velocity and the mass scaling scheme is performed.

2. Theory

2.1 General Description of the Dynamic Explicit
Formulation

A nonlinear finite element equation of motion is obtained
from the principle of virtual work, which is the weak form for
equilibrium equation. The weak form, which includes internal
force, contact/friction force, inertia force, damping force, ex-
ternal force, and boundary condition, is described as follows
(Ref 11):
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where S means the surface, which is subjected to the external
force, and Si means the surface in contact. The left side of the
above equation includes the terms for internal work, inertia
work, work done by body force, work exerted by the stress
boundary condition, and work consumption due to contact and
friction. In finite element discretization of the above equation,
the internal work term includes either material behavior model
or kinematic model according to element types.

If membrane model, material behavior model, element
shape function, and dynamics of rigid body are introduced into
the principle of virtual work, a nonlinear finite element equa-
tion of motion can be obtained. The nonlinear finite element
equation can be expressed by the following matrix form at time
step n.
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From the above equation, to obtain a solution at time step
n + 1, the central difference method for the time discretiza-
tion of acceleration and velocity is introduced:
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If the above equation is substituted into Eq 2 and rearranged,
the following equation can be obtained:
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The central difference method has selective convergency ac-
cording to the magnitude of ∆t, and the accuracy and conver-
gency are linearly proportional to the square of ∆t (Ref 13).
Nodal displacements can be obtained at time step n + 1 by Eq 4;
then the deformation area is updated. A new magnitude of time
increment to guarantee convergency should be decided accord-
ing to the updated deformation. The magnitude of global time
increment can be determined by the following equation after
calculating the time increment of every element.

∆tn+1 = α min {∆t1, ∆t2, ... , ∆tN} (Eq 5)

where N is the total element number and ∆ti is the time incre-
ment of the ith element. The safe constant, α, is often selected
to be less than 0.9.

The critical time increment is determined:

∆tc = L s  /C (Eq 6)

where Ls is the characteristic length, which is the given element
area divided by the largest edge.

The propagation speed C is determined:

C = √Et

ρ
(Eq 7)

where Et is the tangent modulus and ρ is material density.
A mass scaling scheme is introduced because the time scale

of the analysis is of particular importance in dynamic analysis.
In this case, the analysis cannot simply be sped up without af-
fecting the results because the inertial effects are not the only
criteria to consider. One approach is to scale the mass density
while using the real process time:

• The wave speed of the material is inversely proportional to
the square root of the material density.

• Increasing the density by a factor of 100 will increase the
stable time increment by a factor of 10.

• The effect is to increase the ratio of material wave speed to
the punch speed.

Mass scaling allows for the use of unaltered material prop-
erties with the same process time.

The explicit procedure is a true dynamic procedure and was
originally developed for high speed impact problems. Because
of the robust nature of the contact algorithms and the ability to
model extremely large problems, investigators often try to ana-
lyze low speed events with the dynamic explicit procedure.
Even quasi-static problems can be attempted using the explicit
scheme. In realistic metal forming or stamping processes, a
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punch may move at speeds of 1 m/s or less, and the forming
process may occur over a time period of seconds. These rates
are very slow compared to typical wave speeds in metals. The
wave speed in steel is approximately 5000 m/s. The problem
should be run at the highest punch speed at which the inertial ef-
fects do not dominate the solution. In general, the punch veloc-
ity must be less than one percent of the wave speed of the
material to obtain a reasonable static solution.

2.2 Lumping Scheme

The computational efficiency and accuracy of the explicit
procedure is based on the implementation of an explicit inte-
gration rule along with the use of lumped element mass matri-
ces.

[M] [a] = [F]

[a] = [M]–1[F] (Eq 8)

If matrix [M] is lumped as a diagonal matrix, matrix inversion
is not needed, and a solution can be obtained directly by a linear
equation, ai = mi

−1fi. The lumping scheme is computationally
economic because matrix inversion involves large computing
time. Often in dynamic analysis, the use of lumping mass ren-
ders more accurate results than consistent mass (Ref 13-16).

The lumping scheme is expressed:
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where Ωe is element domain, p and q are element equation num-
bers, and a and b are element node numbers. In this method,
lumped mass is proportional to the diagonal part of the consis-
tent mass matrix, and the positive valued lumped mass can al-
ways be obtained. In the above equation, the constant α is used
to conserve the total element mass.

2.3 The Efficient Contact and Friction Treatment
Scheme for Dynamic Explicit Integration

The explicit contact algorithm takes advantage of a small
time increment required by the stability limit (Ref 11, 12, 14).
The use of small increments is advantageous because it drasti-
cally simplifies the implementation of contact conditions.

The contact and friction scheme is the mixed form of the
skew boundary condition and the direct trial and error method
(Ref 11, 13). The accelerations, velocities, and displacements
are first calculated without taking the contact conditions into

consideration. Then, the penetration distance h, the tool normal
direction, and the sheet normal direction of contact points are
calculated as shown in Fig. 1.

From the above calculation, the skew boundary condition is
applied, and the resisting force to prevent the penetration of a
node is readily calculated as:

N = mhn/∆t2 (Eq 10)

where m is a nodal lumping mass, and n is a normal vector. If it
is assumed that the motion of the tools is not influenced by the
contact itself, the acceleration changes:

a = apred + acorr = apred + N/m (Eq 11)

and the corrections to the velocity and displacement are calcu-
lated:

V = Vpred + acorr∆t

u = upred + Vcorr∆t (Eq 12)

Fig. 1 Schematic description for the contact scheme
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For friction, the increment is first solved without taking fric-
tion into consideration, and the skew boundary condition is ap-
plied as shown in Fig. 2. Under the skew boundary condition, it
is not necessary to define surface directions tc along which a

slip increment rc is measured. The resisting force Tc required to
prevent slip is then calculated in the same way as the calcula-
tion of the force required to prevent penetration:

Tc = –mrc/∆t2 (Eq 13)

where rc is the slip increment.
Accordingly, the friction force is calculated as follows:

Tfrict = 
Tc

|Tc|
 min (Tcr , |Tc|) (Eq 14)

The resisting force |Tc| is compared with the critical force Tcr =
µ|N|. If the resisting force is less than the critical force, a stick-
ing condition is assumed, and then the resisting force is simply
applied. If the resisting force is larger than the critical force, a
slipping condition is assumed, and the friction force is assumed
to obey Coulomb’s friction law. The procedures of friction
force calculation and stick/slip check are summarized in Fig. 3.

3. Results and Discussion

3.1 Deep Drawing of an Oilpan

Deep drawing of an oilpan involves a complicated three-di-
mensional deformation during the sheet forming process. Due
to complex geometry, sliding and contact of sheet material oc-
curs from region to region. Because the drawing depth is quite
large compared with the original size of the sheet blank, the oil-
pan as a part of automobile engine is difficult to form, and the
flatness of the flange is important. Until recently, finite ele-
ment simulation for deep drawing of a rectangular box
shaped and stepped part was mainly performed by using the

Fig. 2 Schematic description for friction and stick/slip check

Fig. 3 Flow chart for friction force calculation and stick/slip
check

Fig. 4 Schematic view of the parametric tool surfaces for 
oilpan deep drawing
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explicit commercial packages based on elastic plastic shell ele-
ments. Vreede et al. (Ref 17) analyzed the forming processes
for the headlight bracket of a truck, and Liu and Karima (Ref
18) predicted the initial blank shape of an oilpan by using one
step finite element approach based on the upper-bound theorem
from the viewpoint of design concept. The rigid tool was mod-
eled by CATIA (Computer Aided Three Dimensional Interac-
tive Application) CAD/CAM system (Dassault Co., Cedex,
France). Figure 4 shows the schematic view of the tool para-
metric surfaces in which 135 composite surfaces (271 patches)
are used to describe the punch and the die.

Figure 5 shows the finite element mesh used for the analysis
with 1251 nodes and 2400 triangular elements. The blank has
an original rectangular shape of 560 mm by 440 mm. The mate-
rial and process variables used in the analysis are as follows:

• Initial sheet thickness, 1.2 mm
• Stress-strain curve, σ = 451.8 (ε + 0.008)0.306 MPa
• Lankford value for normal anisotropy, r = 1.984
• Coulomb coefficient of friction, µ = 0.1
• Blankholding force, 860 kN

Figure 6 shows the deformed experimental shape at the final
punch stroke. The practical product contains embossed rein-
forcements to impose the rigidity in the middle part of the prod-
uct and has the draw beads. In the simulation, however, the tool
was simplified for obtaining simulation results by ignoring the
embossing and draw beads because of the limitation of analysis
code. The blankholding force used in analysis is larger than the
realistic blankholding force used in the experiment (approxi-
mately 720 kN) because of (or instead of) ignoring the draw
beads.

To investigate the effects of punch velocity, various values
of punch velocity, that is, 15 m/s, 25 m/s, 35 m/s, and 70m/s are
used with the mass scaling in which the density is increased by
a factor of 50 for numerical analysis in Fig. 7 and 8. Figure 7
shows the predicted deformed configurations at selected punch
velocity. As the punch velocity is increased, the inertia effect

becomes larger, and force cannot be sufficiently transmitted to
the nodes located at the outerside of the blank. Also, the de-
formed configurations of the flange show less drawing-in (Ref
19, 20). Accordingly, the thickness strain distribution at a cho-
sen section is higher deviating from reasonable distribution as
the punch velocity is increased as shown in Fig. 8. The numeri-
cal results for the punch velocity of 15 m/s are similar to the
static implicit results of using the same material and process
variables. This punch velocity has proven to be a good compro-
mise between accuracy and effectiveness. In this example, the
comparison with experimental results is unreasonable because
of simulating with the tool of ignoring the embossing and draw
beads. The results of dynamic explicit analysis are compared
with the results of static implicit analysis. The static implicit
code is already developed for the research pertaining to the
autobody panel stamping processes. The whole computation
time for the static implicit scheme took approximately 15 h
with two restarts in Hp/730 workstation. For the dynamic ex-
plicit case of 15 m/s punch velocity, it took approximately 7 h.
For the dynamic explicit case of 25 m/s punch velocity, it took
approximately 4 h. For the case of 35 m/s, it took approxi-
mately 2.7 h. For the case of 70 m/s, it took approximately
1.34 h.

For economic analysis, the mass scaling method is intro-
duced. To investigate the effects of mass scaling, the various

(a)

(b)

Fig. 6 Photographs of experimental specimens by oilpan deep
drawing. (a) View-1. (b) View-2

Fig. 5 Finite element mesh used in the analysis of deep draw-
ing of an oilpan
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mass scalings, which increase the density by factors of 50, 150,
and 700 are used with 15 m/s punch velocity. Figure 9 shows
the predicted deformed configurations, and Fig. 10 shows the
thickness strain distribution at a chosen section. For punch ve-
locity, the excessive increase in the mass scaling causes the de-
viation from reasonable solution. This phenomenon can be
explained by the excessive increase of inertia energy due to
large density. The mass scaling in which the density is in-
creased by a factor of 50 is shown to provide a comparatively
reasonable solution. The whole computation time for the dy-
namic explicit case of the mass scaling, in which the density is
increased by a factor of 50, took approximately 7 h in Hp/730
workstation. For the dynamic explicit case of the mass scaling
in which the density is increased by a factor of 150, it took ap-

proximately 3.67 h. For the dynamic explicit case of the mass
scaling in which the density is increased by a factor of 700, it
took approximately 1.67 h. The velocity scaling and mass scal-
ing methods have identical effects on solution time and accu-
racy in attempting to find a static solution using a dynamic
explicit formulation from simulation results because of not us-
ing the rate dependent material. If the rate dependent material is
used, the effects of the two scaling methods may behave differ-
ently.

Figure 11 shows the thickness strain distribution and de-
formed configuration predicted by the simulation of the 15 m/s
punch velocity and the 50 times mass scaling at the final stage.
Figure 12 shows the comparison of the deformed edge contour
predicted by the present analysis of the 15 m/s punch velocity

Fig. 7 Comparison of edge contour in oilpan deep drawing with various punch velocity
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and the 50 times mass scaling with the experimental results.
The edge contour is somewhat different from the experimental
result. This discrepancy is partly due to the ignorance of em-
bossings and draw beads. The deviation is able to be considered
from the introduction of many assumptions for the efficient and
simple analysis, the limitation of analysis code itself, and the
measurement error of experimental results, and so on.

3.2 Deep Drawing of a Fuel Tank

A fuel tank is difficult to simulate because the tool surface
has a stepped geometry to enhance the rigidity in the middle
part of the product, and there exists higher-order nonlinearities
of contact and friction. The rigid tool description is modelled
by CATIA CAD/CAM system. Figure 13 shows the whole tool
surface described with 31,800 nonparametric patches. The
nonparametric patch has the advantage of a reduced computa-
tion time while the parametric patch is in connection with the
contact search algorithm (Ref 21).

(a)

Fig. 8 Thickness strain distribution for the deep drawing of an
oilpan with various punch velocity. (a) Base line on initial sheet
blank for strain distribution measurement. (b) Comparison of
thicknes strain distribution on the line

(b)

(a)

(b)

(c)

(d)

Fig. 9 Comparison of edge contour in oilpan deep drawing
with various mass scaling. (a) Implicit analysis. (b) Increasing
the density by a factor of 50. (c) Increasing the density by a 
factor of 150. (d) Increasing the density by a factor of 700
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The blank has an initial rectangular shape (1020 mm by 700
mm), and 2400 triangular elements are used.

The material and process variables used in the analysis are
as follows:

• Initial sheet thickness, 0.8 mm
• Stress-strain curve, σ = 526.0(ε)0.239 MPa
• Lankford value for normal anisotropy, r = 1.79
• Coulomb coefficient of friction, µ = 0.1
• Blankholding force, 900 kN

Figure 14 shows the deformed experimental shape at the
final punch stroke. The practical product contains embossed
reinforcements to impose the rigidity in the middle part of
the product and has the draw beads. In the simulation, how-
ever, the tool was simplified for obtaining simulation results
by ignoring the draw beads because of the limitation of
analysis code. The blankholding force used in analysis is
larger than the realistic blankholding force used in the ex-

periment (approximately 750 kN) because of (or instead of) ig-
noring the draw beads.

To investigate the effects of punch velocity, various values
of punch velocity, that is, 5 m/s, 10 m/s, 20 m/s, and 30 m/s are
used with the mass scaling in which the density is increased by
a factor of 50 for numerical analysis as shown in Fig. 15 and 16.
Figure 15 shows the predicted deformed configurations at se-
lected punch velocity. As the punch velocity is increased, the
inertia effect becomes larger, and force cannot be sufficiently
transmitted to the nodes located at the outerside of the blank.
Also, the deformed configurations of the flange show less draw-
ing-in. Accordingly, the thickness strain distribution at an arbitrar-
ily chosen section is higher deviating from reasonable distribution
as the punch velocity is increased as shown in Fig. 16. The numeri-
cal results for the punch velocity of 10 m/s are similar to the results
for the punch velocity of 5 m/s. These results also agree with the
experimental results, and this punch velocity is proven to be a
good compromise between accuracy and effectiveness.

(a)

(b)

Fig. 10 Thickness strain distribution for the deep drawing of
an oilpan with various mass scaling. (a) Base line on initial sheet
blank for strain distribution measurement. (b) Comparison of
thickness strain distribution on the line

Fig. 11 Thickness strain distribution and deformed configura-
tion of an oilpan predicted by the simulation of the 15 m/s punch
velocity and the 50 times mass scaling at the final stage

Fig. 12 Comparison of the simulated results of the 15 m/s
punch velocity and the 50 times mass scaling with the experi-
ment for the deformed edge shape: deep drawing of an oilpan
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Fig. 13 Schematic view of the nonparametric tool surfaces for
fuel tank deep drawing

(a)

(b)

Fig. 14 Photographs of experimental specimens by a fuel tank
deep drawing. (a) View-1. (b) View-2

(a) (b)

(c) (d)

Fig. 15 Comparison of edge contour in fuel tank deep drawing with various punch velocity. Punch velocity equals (a) 5 m/s,  (b) 10 m/s,
(c) 20 m/s, and (d) 30 m/s.
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The whole computation time for the dynamic explicit case
of 10 m/s punch velocity took approximately 1 h in Hp/730
workstation. For the dynamic explicit case of 5 m/s punch ve-
locity, it took approximately 1.88 h. For the case of 20 m/s, it
took approximately 0.49 h. For the case of 30 m/s, it took ap-
proximately 0.18 h.

The mass scaling method is introduced for economic analy-
sis. To investigate the effects of mass scaling, the various mass
scalings, which increase the density by factors of 20, 50, 100,
and 150, are used with 10 m/s punch velocity. Figure 17 shows
the predicted deformed configurations, and Fig. 18 shows the
thickness strain distribution at an arbitrarily chosen section. In
the case of punch velocity, the excessive increase in the mass
scaling causes the deviation from reasonable solution.

This phenomenon can be explained by the excessive in-
crease of inertia energy due to large density. The results of the
mass scaling in which the density is increased by a factor of 50
are similar to the results of the mass scaling in which the density
is increased by a factor of 20, and these results also agree with

the experimental results. The mass scaling in which the density
is increased by a factor of 50 is shown to provide a compara-
tively reasonable solution. The whole computation time for the
dynamic explicit case of the mass scaling, in which the density
is increased by a factor of 50, took approximately 1 h in Hp/730
workstation. For the dynamic explicit case of the mass scaling,
in which the density is increased by a factor of 20, it took ap-
proximately 1.53 h. For the dynamic explicit case of the mass
scaling in which the density is increased by a factor of 100, it
took approximately 0.69 h. For the dynamic explicit case of
the mass scaling, in which the density is increased by a fac-
tor of 150, it took approximately 0.58 h. Figure 19 shows the

(a)

(b)

Fig. 16 Thickness strain distribution for the deep drawing of a
fuel tank with various punch velocity. (a)  Base line on initial
sheet blank for strain distribution measurement. (b) Comparison
of thickness strain distribution on the line

(a)

(b)

(c)

(d)

Fig. 17 Comparison of edge contour in fuel tank deep drawing
with various mass scaling. Increasing the density by a factor of
(a) 20, (b) 50, (c) 100, and (d) 150.
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thickness strain distribution and deformed configuration pre-
dicted by the simulation of the 10 m/s punch velocity and the 50
times mass scaling at the final stage. Figure 20 shows the com-
parison of the deformed edge contour predicted by the present
analysis of 10 m/s punch velocity and the 50 times mass scaling
with the experimental results. The edge contour is somewhat
different from the experimental result. This discrepancy is
partly due to the ignorance of draw beads. The deviation can be
considered from the introduction of many assumptions for the
efficient and simple analysis, the limitation of analysis code it-
self and the measurement error of experimental results, and so
on.

4. Conclusions

The dynamic explicit finite element method has been devel-
oped and applied to the analysis of sheet metal forming proc-

esses. For analyses of more complex cases with larger and more
refined meshes, the explicit method is more effective than the
implicit method, while the implicit method is widely used be-
cause of its excellent accuracy and reliability.

In the explicit analysis, the punch velocity is increased to
save computing time at the cost of solution accuracy. As the
punch velocity is increased, the inertia effect becomes larger,
and force cannot be sufficiently transmitted to the nodes lo-
cated at the outside of the blank. Also, the deformed configura-
tions of the flange show less drawing-in. Therefore, a
reasonable punch velocity should be chosen so that computa-
tion time and solution reliability can be compromised so that
the inertial effect can be properly controlled.

For economic analysis, the mass scaling method is intro-
duced in the dynamic explicit analysis. As in the case of punch
velocity, the excessive increase in the mass scaling causes the
deviation from reasonable solution. This phenomenon can be
explained by the excessive increase of inertia energy due to

Fig. 19 Thickness strain distribution and deformed configura-
tion of a fuel tank predicted by the simulation of the 10 m/s
punch velocity and the 50 times mass scaling at the final stage

Fig. 20 Comparison of the simulated results of the 10 m/s
punch velocity and the 50 times mass scaling with the experi-
ment for the deformed edge shape: deep drawing of a fuel tank

(a)

(b)

Fig. 18 Thickness strain distribution for the deep drawing of a
fuel tank with various mass scaling.(a)  Base line on initial sheet
blank for strain distribution measurement. (b) Comparison of
thickness strain distribution on the line

Journal of Materials Engineering and Performance Volume 7(4) August 1998489



large density. The mass scaling factor, which does not affect so-
lution reliability and is able to provide economic analysis,
should be chosen. Also, the inertial effect should be properly
controlled. The dynamic explicit analysis is applied to the com-
plicated sheet metal forming processes such as forming of an
oilpan and a fuel tank. Additionally, the investigation on the ef-
fects of the punch velocity and the mass scaling scheme in the
simulation results is conducted.
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